Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Proc Natl Acad Sci U S A ; 120(1): e2208525120, 2023 01 03.
Article in English | MEDLINE | ID: covidwho-2186693

ABSTRACT

Major histocompatibility complex class I (MHC-I) molecules, which are dimers of a glycosylated polymorphic transmembrane heavy chain and the small-protein ß2-microglobulin (ß2m), bind peptides in the endoplasmic reticulum that are generated by the cytosolic turnover of cellular proteins. In virus-infected cells, these peptides may include those derived from viral proteins. Peptide-MHC-I complexes then traffic through the secretory pathway and are displayed at the cell surface where those containing viral peptides can be detected by CD8+ T lymphocytes that kill infected cells. Many viruses enhance their in vivo survival by encoding genes that down-regulate MHC-I expression to avoid CD8+ T cell recognition. Here, we report that two accessory proteins encoded by SARS-CoV-2, the causative agent of the ongoing COVID-19 pandemic, down-regulate MHC-I expression using distinct mechanisms. First, ORF3a, a viroporin, reduces the global trafficking of proteins, including MHC-I, through the secretory pathway. The second, ORF7a, interacts specifically with the MHC-I heavy chain, acting as a molecular mimic of ß2m to inhibit its association. This slows the exit of properly assembled MHC-I molecules from the endoplasmic reticulum. We demonstrate that ORF7a reduces antigen presentation by the human MHC-I allele HLA-A*02:01. Thus, both ORF3a and ORF7a act post-translationally in the secretory pathway to lower surface MHC-I expression, with ORF7a exhibiting a specific mechanism that allows immune evasion by SARS-CoV-2.


Subject(s)
COVID-19 , Histocompatibility Antigens Class I , SARS-CoV-2 , Viral Regulatory and Accessory Proteins , Humans , Antigen Presentation , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/metabolism , HLA Antigens , Peptides , SARS-CoV-2/metabolism , Viral Regulatory and Accessory Proteins/metabolism
2.
Infect Control Hosp Epidemiol ; 42(10): 1286-1288, 2021 10.
Article in English | MEDLINE | ID: covidwho-1428654

ABSTRACT

The incubation period of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is rarely >14 days. We report a patient with hypogammaglobulinemia who developed coronavirus disease 2019 (COVID-19) with a confirmed incubation period of at least 21 days. These findings raise concern for a prolonged presymptomatic transmission phase, necessitating a longer quarantine duration in this patient population.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Quarantine , Rituximab/therapeutic use , Time Factors
3.
PLoS One ; 16(7): e0254453, 2021.
Article in English | MEDLINE | ID: covidwho-1329135

ABSTRACT

BACKGROUND: Limited therapeutic options exist for coronavirus disease 2019 (COVID-19). COVID-19 convalescent plasma (CCP) is a potential therapeutic, but there is limited data for patients with moderate-to-severe disease. RESEARCH QUESTION: What are outcomes associated with administration of CCP in patients with moderate-to-severe COVID-19 infection? STUDY DESIGN AND METHODS: We conducted a propensity score-matched analysis of patients with moderate-to-severe COVID-19. The primary endpoints were in-hospital mortality. Secondary endpoints were number of days alive and ventilator-free at 30 days; length of hospital stay; and change in WHO scores from CCP administration (or index date) to discharge. Of 151 patients who received CCP, 132 had complete follow-up data. Patients were transfused after a median of 6 hospital days; thus, we investigated the effect of convalescent plasma before and after this timepoint with 77 early (within 6 days) and 55 late (after 6 days) recipients. Among 3,217 inpatients who did not receive CCP, 2,551 were available for matching. RESULTS: Early CCP recipients, of whom 31 (40%) were on mechanical ventilation, had lower 14-day (15% vs 23%) and 30-day (38% vs 49%) mortality compared to a matched unexposed cohort, with nearly 50% lower likelihood of in-hospital mortality (HR 0.52, [95% CI 0.28-0.96]; P = 0.036). Early plasma recipients had more days alive and ventilator-free at 30 days (+3.3 days, [95% CI 0.2 to 6.3 days]; P = 0.04) and improved WHO scores at 7 days (-0.8, [95% CI: -1.2 to -0.4]; P = 0.0003) and hospital discharge (-0.9, [95% CI: -1.5 to -0.3]; P = 0.004) compared to the matched unexposed cohort. No clinical differences were observed in late plasma recipients. INTERPRETATION: Early administration of CCP improves outcomes in patients with moderate-to-severe COVID-19, while improvement was not observed with late CCP administration. The importance of timing of administration should be addressed in specifically designed trials.


Subject(s)
COVID-19/therapy , Adult , Aged , COVID-19/epidemiology , COVID-19/metabolism , Cohort Studies , Connecticut/epidemiology , Female , Hospital Mortality/trends , Humans , Immunization, Passive/methods , Inpatients , Length of Stay/statistics & numerical data , Male , Middle Aged , Propensity Score , Randomized Controlled Trials as Topic , SARS-CoV-2/isolation & purification , Treatment Outcome , COVID-19 Serotherapy
4.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Article in English | MEDLINE | ID: covidwho-1246477

ABSTRACT

The ongoing COVID-19 pandemic has caused an unprecedented global health crisis. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of COVID-19. Subversion of host protein synthesis is a common strategy that pathogenic viruses use to replicate and propagate in their host. In this study, we show that SARS-CoV-2 is able to shut down host protein synthesis and that SARS-CoV-2 nonstructural protein NSP14 exerts this activity. We show that the translation inhibition activity of NSP14 is conserved in human coronaviruses. NSP14 is required for virus replication through contribution of its exoribonuclease (ExoN) and N7-methyltransferase (N7-MTase) activities. Mutations in the ExoN or N7-MTase active sites of SARS-CoV-2 NSP14 abolish its translation inhibition activity. In addition, we show that the formation of NSP14-NSP10 complex enhances translation inhibition executed by NSP14. Consequently, the translational shutdown by NSP14 abolishes the type I interferon (IFN-I)-dependent induction of interferon-stimulated genes (ISGs). Together, we find that SARS-CoV-2 shuts down host innate immune responses via a translation inhibitor, providing insights into the pathogenesis of SARS-CoV-2.


Subject(s)
COVID-19/immunology , Exoribonucleases/immunology , Immune Evasion , Immunity, Innate , Protein Biosynthesis/immunology , SARS-CoV-2/immunology , Viral Nonstructural Proteins/immunology , Animals , Chlorocebus aethiops , Humans , Vero Cells
5.
Immunity ; 54(6): 1304-1319.e9, 2021 06 08.
Article in English | MEDLINE | ID: covidwho-1246001

ABSTRACT

Despite mounting evidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) engagement with immune cells, most express little, if any, of the canonical receptor of SARS-CoV-2, angiotensin-converting enzyme 2 (ACE2). Here, using a myeloid cell receptor-focused ectopic expression screen, we identified several C-type lectins (DC-SIGN, L-SIGN, LSECtin, ASGR1, and CLEC10A) and Tweety family member 2 (TTYH2) as glycan-dependent binding partners of the SARS-CoV-2 spike. Except for TTYH2, these molecules primarily interacted with spike via regions outside of the receptor-binding domain. Single-cell RNA sequencing analysis of pulmonary cells from individuals with coronavirus disease 2019 (COVID-19) indicated predominant expression of these molecules on myeloid cells. Although these receptors do not support active replication of SARS-CoV-2, their engagement with the virus induced robust proinflammatory responses in myeloid cells that correlated with COVID-19 severity. We also generated a bispecific anti-spike nanobody that not only blocked ACE2-mediated infection but also the myeloid receptor-mediated proinflammatory responses. Our findings suggest that SARS-CoV-2-myeloid receptor interactions promote immune hyperactivation, which represents potential targets for COVID-19 therapy.


Subject(s)
COVID-19/metabolism , COVID-19/virology , Host-Pathogen Interactions , Lectins, C-Type/metabolism , Membrane Proteins/metabolism , Myeloid Cells/immunology , Myeloid Cells/metabolism , Neoplasm Proteins/metabolism , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites , COVID-19/genetics , Cell Line , Cytokines , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Inflammation Mediators/metabolism , Lectins, C-Type/chemistry , Membrane Proteins/chemistry , Models, Molecular , Neoplasm Proteins/chemistry , Protein Binding , Protein Conformation , Single-Domain Antibodies/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL